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SIMD on IA (SSE) (1)

" SISD: x87

" MMX
" First SIMD support on x86
* AMD responded with 3dnow
" 64 bit MMX registers
" Supports 8, 16 and 32 bit elements

" As of P4
* X87 and SIMD FP on same logical unit
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" As of EM64T and AMDG64, SSE and SSE?2
always supported

" no reason to use x87 any longer

" As of Prescott (P4+): SSE3
" As of Penryn (Core2 Duo+): SSE4
" LRB

= AVX (2010)
" 256 bit registers
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" Scalar (SISD) double,
“X87” 128 bits

* 1 scalar double precision | | |
calculation per instruction

" Packed double

" 2 scalar double precision | | |
calculations per instruction

" Packed single | I | | |

" 4 scalar single precision
calculations per instruction
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" EPle4
o 128 bits
" 2 64-bit integer
calculations per instruction | )
" EPI32
" 4 32-bit integer | ] ] ] |
calculations per instruction
" EPI8 EEEEEEEEEEEEEEEE

" 16 8-bit integer
calculations per instruction

CERN openlab presentation — 2007 10
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" Woodcrest @ 2.4 GHz using ICC 9.1

Calculation time Incremental Total speedup
per track / us speedup  from scalar

scalar 2.6 1 1
double 1.6 1.6 1.6
single 0.7 2.3 3.7
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" SPSD
" SISD
" Pre-MMX PCs

" MPMD

" Asynchronous

" Task-level parallelism

" Example: web server
" Constraints: Shared I/0O

Parallelism (1)
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" MPSD " SPMD
" Lock synchronization " Synchronization:
* Task-level parallelism * Intrinsic (SIMD)
« Barriers

" Example: Producer-

consumer " Data parallelism

" Examples
« MPI (typically)
» OpenMP (typically)
« SIMD
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" Cellular automaton, based on Conway's
Game of Life

. .:3.3:'-

-
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Overpopulation Starvation Survives

" Dependency
between
iterations

" Data parallelism i F i
thin i I vy YYyvVyYy

within iterations

lteration 1 lteration 2
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" When use SIMD?

* When the computation is the bottleneck
" Find the bottleneck first!

" Single Operation Multiple Data is a
prerequisite for SIMD
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a7 Strategy (2)
" SIMD in an overall optimization strategy
" Develop with benchmarking in mind
" Make sure it's correct and verifiable
" Develop algorithm with complexity in mind
" Work on hotspots
" Develop algorithm with parallel model in mind
" Develop SIMD
" Develop multi-threading

" Get more / faster computers

17
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" Total speedup w/ both optimizations:
3.7/0.12 =30

>
3.5 > gcea.1.2/clovertown
M icc/clovertown
3
Real fit  2°
. >
time/track 2 ’
(us) 15
1
7
0.5 N
N M ™
0
scalar double single -> 2 4 8 16
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More control
" ASM

A
" Intrinsics
" C++ classes (ICC)
" Valarray (ICC >= 11)

" Auto-vectorization (GCC 4.x,
ICC)

\

More convenience
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" High precision
performance
measurement
" Pfmon

* Rdtsc instrumentation

Exercises in Part 2

* SSE Tools &
paradigms
" Auto-vectorization
" ASM
" Intrinsics
" C++ classes

" Valarray
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" GCC 4.X —the newer the better

" GCC 4.3 avaiable on tutorial machine

" |CC 11 — available on AFS and tutorial
machine

" Pfmon - available on tutorial machine
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" Why?

" It is difficult to predict the performance impact of
design changes

" Knowledge about behaviour can be gained
iIndirectly
" E.g. intrapolation, extrapolation

" High precision performance measurement

" Allows us to investigate directly if we are exploiting
the hardware correctly
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Pfmon

Uses the Performance Monitoring Unit in the
CPU

Event counters
" Counts many aspects of the CPU's behaviour

" Very small impact on performance
Profiling

Instrumentation with libpfm
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" Using PMU hardware counters with pfmon
(billion instructions)

instruction type scalar double single

computational scalar double 10.6 0 0
computational packed double 0) 5.5 0
total packed double 0) 5.5 0

total SIMD 16.9 9.5 4.7
total 24.7 17.2 10.9
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X . Exercise 0: Pfmon (1)

" Explore pfmon options
" “pfmon -h”
" Try it on a simple program
* “pfmon factor 100”
" List available event counters
e “pfmon -I”
* Show info about a specific event
« “pfmon -i UNHALTED CORE_CYCLES’
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Exercise 0: Pfmon (2)

" Assess efficiency of “factor n”

* What is the Cycles Per Instruction ratio?
« UNHALTED_CORE_CYCLES
« INSTRUCTIONS_RETIRED

How many x87 ops retired?

How many SIMD instructions retired?

How may branch instructions retired?

How many of the branch instructions are
mispredicted?

" Try profiling: see “--short-smpl-period”
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Exercise 1: Rdtsc instrumentation

" Time stamp counter

" Counts #cycles (ticks) since boot

" Exercise
* Convert #cycles to time
« Hint: see /proc/cpuinfo

" |s the TSC correct

 On a multi-core machine?

« With variable CPU frequency?
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" GCC and ICC can automatically vectorize
loops for you

" Supported in ~ GCC > 4.1
" The newer the better
" But with constraints

" Loops must be countable

" Dependencies within / between loops

29



a7 Auto-vectorization
" Things that may cause problems
" Loop external dependencies
" Uncountable loops

* Control flow in loop

30
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" Try auto-vectorization with GCC

" G++ -O3 -msse3 -ftree-vectorize -ftree-vectorizer-
verbose=2

" Which loops are auto-vectorized?
" Try with ICC

" Try to modify the control flow and see if it
works better

31
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" Explicit methods for vectorization:
" Explicit asm
" Intrinsics, provided by ICC and GCC
* Operator overloading, provided by ICC for C++

" Operator overloading allows seamless
change of data types, even between
primitives (e.g. float) and classes

" Example classes provided by fvec.h and dvec.h

P4 F32vec4 — packed single
P4 F64vec2 — packed double

32
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" GCC “-s” flag gives assembler output

" Useful to study compiler and hardware
behaviour

" Infeasible to use on a large scale

* Can be useful for hotspots

" More control, less convenience

" But for SIMD, intrinsics usually give enough control

33
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" Data movement

* MOV* - Either operand is either memory or
reqgister

* MOVAPS — move 16 bytes of aligned data

* MOVUPS — makes no assumption about alignment

34



N,
Yoy Some examples (2)

" ADDPS

" Add packed single precision — 4 32-bit floating
point add per instruction

" ADDPD

" Add packed double precision — 2 64-Dbit floating
point add per instruction

" ADDSS

" Add scalar single precision — 1 32-bit floating point
add per instruction — not SIMD

35
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" Compare instructions
* CMPEQPS xmm1, xmm2

« Compare PS values in xmm1 and xmmz2
« If true, a true-mask (OxFFFFFFFF) is stored in xmm1,
otherwise 0
" The mask can be used later to validate result

 There is no SIMD branch instruction!

" ANDPS, ORPS
 Logical bit-wise and
« Same as &, but for SIMD

 Can be used to combine masks

36
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" Examine assembler output from Exercise 2
with and without auto-vectorization

" See TODO in asm.cpp

" Examine the assembler output from asm.cpp

37
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" Less verbose than assembly
" Blends more naturally with the rest of the
code

" Almost direct translation of the SSE
Instruction Set Architecture

38
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__mml28 a=_mm_set ps(3.14159265, .3183098865, ...
MOVUPS xmmoO, [rax]
a=mm_rcp_ps(a);

RCPPS xmmO0O, xmmO

39
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" xmmintrin.h implements SSE intrinsics

" Useful reference
" See TODO in intrinsics.cpp
" |Is RCP correct?

" Try div_ps

40



a7 Intel C++ classes
CERN

openlab

" dvec.h, fvec.n — ICC specific headers for
vector classes

" Higher level of abstraction than __m128x data
types
" Classes have operator overloading

" Allows seamless interchange with native data
types

41



" Compile classes.cpp with icpc
" See TODO

42



" Since ICC 11
" Arbitrarily sized vectors

" Also has native-like operators

43



..\ .'-

.'

CERN

openlab

Exercise 6: Optimized Valarray

See TODO in valarray.cpp
What is the performance?

What is the benefit of valarray over vector
classes?

Try shifting a large vector with more than 4
elements
" With vector classes

" With valarray

44
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= SSE Techniques

" Reduction

Vector formats
Alignment
Control flow
Prefetch

Exercises in Part 3




. ;’
CERN

openlab

" Shuffle
* SHUFxx xmm1, xmm2/mem, IMMS8

Reduction
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" Matrix normalization
" Same as vector normalization
*"N=V/|V|=V/sqrt(V*2)

" Use shuffle to reduce

" TODO

" Fill in missing sum reduction
* Fill in missing division

 Hint: remember rcp?

48
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" SSE 2 allows double precision floating point
SIMD operations

" See emmintrin.h

" formats.cpp

" Reimplement matrix normalization with packed
double instead of packed single

* One instruction is missing?
" Pfmon

" Count PS and PD instructions

49
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" alignment.cpp: See TODO

" Align memory access on SSE register width
boundary (16 bytes)

" Example
" Replace _mm_loadu_ps with _mm_load_ps

" mm_malloc

* See mm_malloc.h

50



a7 Exercise 9: Alignment
" |s there any difference in performance?
" If so, then why?
" Investigate with pfmon

" Try increasing the size of the grid

51
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" Conditional branches are impossible in SIMD

" If you branch into n streams, then it's not SIMD
any longer

" Which of the elements would you branch on?
" Also, branches are bad

" Mispredicted branches flush the pipeline

" Solutions

* Conditional moves
" Masks

52
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" Example: A fruit basket

For each fruit
if(is_fruit(fruit) && !has_seeds(fruit)) eat(fruit)

fruit apple | orange | pear | carrot
is_fruit OxFF | OxFF | OxFF 0
has seeds OxFF 0 OxFF 0
eat = is_fruit & ~has_seeds 0 OxFF 0 0
fruit = fruit & ~eat apple 0 pear | carrot

53
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" Example: Conway's Game of Life
" control_flow.cpp
" Remove control flow

= Solutions

 Use masks
* Avoid

54
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" Remove control flow (stream)

" First: Try to remove all conditional branches in cell
survival logic

e Hint: use masks
* Second: Try to remove all boundary checks
« Hint: avoid control flow — don't use masks

" Pfmon

* Compare branching behaviour in naive and
streaming implementations

* What is the mispredicted / branches ratio?

55
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" Implement SIMD

" What precision do we need?

« Each cell is either dead (0) or alive (1)
* Lowest SSE precision is 8 bits
* Is it worth or possible to go lower than that?
" Extra challenges
" Align memory accesses

" |Is it necessary to iterate each cell?

56
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Exercise 11: Prefetch

" Memory access Is expensive

" Superscalability: While we are waiting to
finish loading from memory we can do other
useful stuff in parallel

" SSE allows explicit prefetch from memory

" Load a memory address that you expect to use in
the future into cache

" Difficult to gain any speedup, since the CPU
prefetches automatically

57
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" Intrinsic: _mm_prefetch

" See xmmintrin.h

" When does it pay off?
" Try different grid sizes

" Try prefetching for different strides into the future

" Pfmon

" What impact does it have on memory events?

" Try prefetch in the previous exercise

58
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" Forward-scaling for future architecture
" Many cores

" Wider vector registers
* e.g. AVX: 256 bits, new instructions

" Forward-portable code
Ct )

C++ classes ;)

Intrinsics :|
ASM :(
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Ct

Not an extension to C++
Platform independent

Ct specific containers, similar to valarray, with
arbitrary vector lengths
" e.g. TVEC2D

Exploits both SIMD and hardware thread
parallelism
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TVEC2D<US8> current(grid, x_size, y_size);

TVEC2D<U8> neighbors=leftShiftPermute(current, 1) +
rightShiftPermute(current, 1) ...

current=TVEC2D<U8>(neighbors==3||(neighbors==2 &&
current==1));
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" Many-core

" Hardware concurrency in instruction streams is
Increasing faster than other concurrency

" We need to think n-way parallelism
* Not 2, 8 or 32

" We may need to search for the lowest level of
parallelism in our algorithms

« For SIMD, data parallelism is often necessary

— Hard synchronization
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Mapping to parallel hardware

large vector, data parallel operation

If vector is large enough, use multiple cores

- =

Use SSE

64
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" Explicit vectorisation is sometimes necessary

" Can't always trust the compiler to vectorise for you
" Memory organization needs attention
" Control flow needs attention

" Custom vector types (classes) with operator
overloading is an efficient and portable
method
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" A lot of time (= money) can be saved by properly
optimizing parallel code

" Track fitter example

" Example vectorization speedup from scalar
double to packed single: 3.7

" Example multithreading speedup on 8 cores: 7.2
" Total w/ both optimizations: 3.7 /0.12 = 30

* Proportional speedup increase can be expected
with future architectures
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" A proactive approach to SIMD
" Proactive algorithm design
" Future-scalabllity

" Future-portability
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a7 Further reading
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" Intel IA-32 software developer's manual
" Google “AVX”
" Google “LRB”
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S'Em! " Rules
" Create the fastest
GOL " Has to be correct

" Use any trick in the book
« SIMD, prefetch, etc.
* Multi-threading

Implementation

" Prize:

« Skipping cells
 Performance is measured
on a neutral machine

7 Tntel .
Threading " Must handle arbitrary

Building Bloc ks

#iterations and x and y
sizes

OYREILLY™
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