SIMD tutorial

openlab

06.12.2008

Havard Bjerke

\, » .
AT Outline Part 1

<oy
CERN

openlab
" SIMD on Intel architecture
" SSE Vector formats

" Data parallelism

" Strategy

* ;’
CERN

openlab

" High-precision performance

measurement

" Tools & technologies

" Automatic vectorization

ASM
Intrinsics
C++ classes

Valarray

QOutline Part 2

" SIMD techniques

" Reduction
" Data alignment

" Control flow

" Prefetch

Valarray
" Ct

" Future SIMD
" Lessons

" Conclusion

openlab

..\ .'-

.'

CERN

openlab

SIMD on IA (SSE) (1)

" SISD: x87

" MMX
" First SIMD support on x86
* AMD responded with 3dnow
" 64 bit MMX registers
" Supports 8, 16 and 32 bit elements

" As of P4
* X87 and SIMD FP on same logical unit

\
s SIMD on IA (SSE) (2)
CERN

" As of EM64T and AMDG64, SSE and SSE?2
always supported

" no reason to use x87 any longer

" As of Prescott (P4+): SSE3
" As of Penryn (Core2 Duo+): SSE4
" LRB

= AVX (2010)
" 256 bit registers

a7 SSE FP vector formats
CERN

" Scalar (SISD) double,
“X87” 128 bits

* 1 scalar double precision | | |
calculation per instruction

" Packed double

" 2 scalar double precision | | |
calculations per instruction

" Packed single | I | | |

" 4 scalar single precision
calculations per instruction

a7 SSE integer formats
CERN
openlab
" EPle4
o 128 bits
" 2 64-bit integer
calculations per instruction |)
" EPI32
" 4 32-bit integer |]]] |
calculations per instruction
" EPI8 EEEEEEEEEEEEEEEE

" 16 8-bit integer
calculations per instruction

CERN openlab presentation — 2007 10

a7 Case: HLT Track Fitter
CERN

openlab

" Woodcrest @ 2.4 GHz using ICC 9.1

Calculation time Incremental Total speedup
per track / us speedup from scalar

scalar 2.6 1 1
double 1.6 1.6 1.6
single 0.7 2.3 3.7

11

e ;’
CERN

openlab

" SPSD
" SISD
" Pre-MMX PCs

" MPMD

" Asynchronous

" Task-level parallelism

" Example: web server
" Constraints: Shared I/0O

Parallelism (1)

12

\»

s by Parallelism (2)
CERN
openlab
" MPSD " SPMD
" Lock synchronization " Synchronization:
* Task-level parallelism * Intrinsic (SIMD)
« Barriers

" Example: Producer-

consumer " Data parallelism

" Examples
« MPI (typically)
» OpenMP (typically)
« SIMD

13

\»
s iy Example: Game of Life

CERN

openlab

" Cellular automaton, based on Conway's
Game of Life

. .:3.3:'-

-

1,
-

14

\»

s iy Game of Life data parallelism
CERN
openlab

Overpopulation Starvation Survives

" Dependency
between
iterations

" Data parallelism i F i
thin i I vy YYyvVyYy

within iterations

lteration 1 lteration 2

15

\ »
™ oy Strategy (1)

CERN

openlab

" When use SIMD?

* When the computation is the bottleneck
" Find the bottleneck first!

" Single Operation Multiple Data is a
prerequisite for SIMD

16

a7 Strategy (2)
" SIMD in an overall optimization strategy
" Develop with benchmarking in mind
" Make sure it's correct and verifiable
" Develop algorithm with complexity in mind
" Work on hotspots
" Develop algorithm with parallel model in mind
" Develop SIMD
" Develop multi-threading

" Get more / faster computers

17

\»
s iy Track fitter speedup

CERN

openlab

" Total speedup w/ both optimizations:
3.7/0.12 =30

>
3.5 > gcea.1.2/clovertown
M icc/clovertown
3
Real fit 2°
. >
time/track 2 ’
(us) 15
1
7
0.5 N
N M ™
0
scalar double single -> 2 4 8 16

18

Part 2: Tools & techniques

openlab

\»
s iy Tools & paradigms

CERN

openlab

More control
" ASM

A
" Intrinsics
" C++ classes (ICC)
" Valarray (ICC >= 11)

" Auto-vectorization (GCC 4.x,
ICC)

\

More convenience

20

\»
~‘ '-

.'

CERN

openlab

" High precision
performance
measurement
" Pfmon

* Rdtsc instrumentation

Exercises in Part 2

* SSE Tools &
paradigms
" Auto-vectorization
" ASM
" Intrinsics
" C++ classes

" Valarray

..\ .'-

o Required tools
CERN

openlab

" GCC 4.X —the newer the better

" GCC 4.3 avaiable on tutorial machine

" |CC 11 — available on AFS and tutorial
machine

" Pfmon - available on tutorial machine

Yok Performance measurement
CERN

openlab

" Why?

" It is difficult to predict the performance impact of
design changes

" Knowledge about behaviour can be gained
iIndirectly
" E.g. intrapolation, extrapolation

" High precision performance measurement

" Allows us to investigate directly if we are exploiting
the hardware correctly

..\ .'-

.'

CERN

openlab

Pfmon

Uses the Performance Monitoring Unit in the
CPU

Event counters
" Counts many aspects of the CPU's behaviour

" Very small impact on performance
Profiling

Instrumentation with libpfm

\ »
YWk SIMD performance counters

.'

CERN

openlab

" Using PMU hardware counters with pfmon
(billion instructions)

instruction type scalar double single

computational scalar double 10.6 0 0
computational packed double 0) 5.5 0
total packed double 0) 5.5 0

total SIMD 16.9 9.5 4.7
total 24.7 17.2 10.9

25

X . Exercise 0: Pfmon (1)

" Explore pfmon options
" “pfmon -h”
" Try it on a simple program
* “pfmon factor 100”
" List available event counters
e “pfmon -I”
* Show info about a specific event
« “pfmon -i UNHALTED CORE_CYCLES’

..\ .'-

.'

CERN

openlab

Exercise 0: Pfmon (2)

" Assess efficiency of “factor n”

* What is the Cycles Per Instruction ratio?
« UNHALTED_CORE_CYCLES
« INSTRUCTIONS_RETIRED

How many x87 ops retired?

How many SIMD instructions retired?

How may branch instructions retired?

How many of the branch instructions are
mispredicted?

" Try profiling: see “--short-smpl-period”

..\ .'-

.'

CERN

openlab

Exercise 1: Rdtsc instrumentation

" Time stamp counter

" Counts #cycles (ticks) since boot

" Exercise
* Convert #cycles to time
« Hint: see /proc/cpuinfo

" |s the TSC correct

 On a multi-core machine?

« With variable CPU frequency?

Yoo Auto-vectorization
CERN

openlab

" GCC and ICC can automatically vectorize
loops for you

" Supported in ~ GCC > 4.1
" The newer the better
" But with constraints

" Loops must be countable

" Dependencies within / between loops

29

a7 Auto-vectorization
" Things that may cause problems
" Loop external dependencies
" Uncountable loops

* Control flow in loop

30

\ »
" by Exercise 2: Auto-vectorization

CERN

openlab

" Try auto-vectorization with GCC

" G++ -O3 -msse3 -ftree-vectorize -ftree-vectorizer-
verbose=2

" Which loops are auto-vectorized?
" Try with ICC

" Try to modify the control flow and see if it
works better

31

\ »
%y em SIMD vectorisation

.'

CERN

openlab

" Explicit methods for vectorization:
" Explicit asm
" Intrinsics, provided by ICC and GCC
* Operator overloading, provided by ICC for C++

" Operator overloading allows seamless
change of data types, even between
primitives (e.g. float) and classes

" Example classes provided by fvec.h and dvec.h

P4 F32vec4 — packed single
P4 F64vec2 — packed double

32

..\ .'-

o Assembly
CERN

openlab

" GCC “-s” flag gives assembler output

" Useful to study compiler and hardware
behaviour

" Infeasible to use on a large scale

* Can be useful for hotspots

" More control, less convenience

" But for SIMD, intrinsics usually give enough control

33

\»
8 . Some examples (1)
CERN

openlab

" Data movement

* MOV* - Either operand is either memory or
reqgister

* MOVAPS — move 16 bytes of aligned data

* MOVUPS — makes no assumption about alignment

34

N,
Yoy Some examples (2)

" ADDPS

" Add packed single precision — 4 32-bit floating
point add per instruction

" ADDPD

" Add packed double precision — 2 64-Dbit floating
point add per instruction

" ADDSS

" Add scalar single precision — 1 32-bit floating point
add per instruction — not SIMD

35

\»
s by Some examples (3)

CERN

openlab

" Compare instructions
* CMPEQPS xmm1, xmm2

« Compare PS values in xmm1 and xmmz2
« If true, a true-mask (OxFFFFFFFF) is stored in xmm1,
otherwise 0
" The mask can be used later to validate result

 There is no SIMD branch instruction!

" ANDPS, ORPS
 Logical bit-wise and
« Same as &, but for SIMD

 Can be used to combine masks

36

\ »
" by Exercise 3: ASM

CERN

openlab

" Examine assembler output from Exercise 2
with and without auto-vectorization

" See TODO in asm.cpp

" Examine the assembler output from asm.cpp

37

\; .
N oda Intrinsics

.'

CERN

openlab

" Less verbose than assembly
" Blends more naturally with the rest of the
code

" Almost direct translation of the SSE
Instruction Set Architecture

38

\»
a7 Intrinsics example

CERN

openlab

__mml28 a=_mm_set ps(3.14159265, .3183098865, ...
MOVUPS xmmoO, [rax]
a=mm_rcp_ps(a);

RCPPS xmmO0O, xmmO

39

..\ .'-

Vol Exercise 4: Intrinsics
CERN

openlab

" xmmintrin.h implements SSE intrinsics

" Useful reference
" See TODO in intrinsics.cpp
" |Is RCP correct?

" Try div_ps

40

a7 Intel C++ classes
CERN

openlab

" dvec.h, fvec.n — ICC specific headers for
vector classes

" Higher level of abstraction than __m128x data
types
" Classes have operator overloading

" Allows seamless interchange with native data
types

41

" Compile classes.cpp with icpc
" See TODO

42

" Since ICC 11
" Arbitrarily sized vectors

" Also has native-like operators

43

..\ .'-

.'

CERN

openlab

Exercise 6: Optimized Valarray

See TODO in valarray.cpp
What is the performance?

What is the benefit of valarray over vector
classes?

Try shifting a large vector with more than 4
elements
" With vector classes

" With valarray

44

openlab

\»
~‘ g

.'

CERN

openlab

= SSE Techniques

" Reduction

Vector formats
Alignment
Control flow
Prefetch

Exercises in Part 3

. ;’
CERN

openlab

" Shuffle
* SHUFxx xmm1, xmm2/mem, IMMS8

Reduction

\ ' " "
" by Exercise 7: Reduction

CERN

openlab

" Matrix normalization
" Same as vector normalization
*"N=V/|V|=V/sqrt(V*2)

" Use shuffle to reduce

" TODO

" Fill in missing sum reduction
* Fill in missing division

 Hint: remember rcp?

48

\ »
" by Exercise 8: Vector formats

CERN

openlab

" SSE 2 allows double precision floating point
SIMD operations

" See emmintrin.h

" formats.cpp

" Reimplement matrix normalization with packed
double instead of packed single

* One instruction is missing?
" Pfmon

" Count PS and PD instructions

49

\»
a7 Exercise 9: Alignment

CERN

openlab

" alignment.cpp: See TODO

" Align memory access on SSE register width
boundary (16 bytes)

" Example
" Replace _mm_loadu_ps with _mm_load_ps

" mm_malloc

* See mm_malloc.h

50

a7 Exercise 9: Alignment
" |s there any difference in performance?
" If so, then why?
" Investigate with pfmon

" Try increasing the size of the grid

51

‘ g W
\Yad Control flow (1)
CERN

openlab

" Conditional branches are impossible in SIMD

" If you branch into n streams, then it's not SIMD
any longer

" Which of the elements would you branch on?
" Also, branches are bad

" Mispredicted branches flush the pipeline

" Solutions

* Conditional moves
" Masks

52

a7 Control flow (2)
CERN

openlab

" Example: A fruit basket

For each fruit
if(is_fruit(fruit) && !has_seeds(fruit)) eat(fruit)

fruit apple | orange | pear | carrot
is_fruit OxFF | OxFF | OxFF 0
has seeds OxFF 0 OxFF 0
eat = is_fruit & ~has_seeds 0 OxFF 0 0
fruit = fruit & ~eat apple 0 pear | carrot

53

\ »
X oy Exercise 10: Control flow (1)
CERN

openlab

" Example: Conway's Game of Life
" control_flow.cpp
" Remove control flow

= Solutions

 Use masks
* Avoid

54

\»
a7 Exercise 10: Control flow (2)

CERN

openlab

" Remove control flow (stream)

" First: Try to remove all conditional branches in cell
survival logic

e Hint: use masks
* Second: Try to remove all boundary checks
« Hint: avoid control flow — don't use masks

" Pfmon

* Compare branching behaviour in naive and
streaming implementations

* What is the mispredicted / branches ratio?

55

a7 Exercise 10: Control flow (3)
CERN

openlab

" Implement SIMD

" What precision do we need?

« Each cell is either dead (0) or alive (1)
* Lowest SSE precision is 8 bits
* Is it worth or possible to go lower than that?
" Extra challenges
" Align memory accesses

" |Is it necessary to iterate each cell?

56

..\ .'-

.'

CERN

openlab

Exercise 11: Prefetch

" Memory access Is expensive

" Superscalability: While we are waiting to
finish loading from memory we can do other
useful stuff in parallel

" SSE allows explicit prefetch from memory

" Load a memory address that you expect to use in
the future into cache

" Difficult to gain any speedup, since the CPU
prefetches automatically

57

\ »
" by Exercise 11: Prefetch

CERN

openlab

" Intrinsic: _mm_prefetch

" See xmmintrin.h

" When does it pay off?
" Try different grid sizes

" Try prefetching for different strides into the future

" Pfmon

" What impact does it have on memory events?

" Try prefetch in the previous exercise

58

openlab

\ »
g Future SIMD

.'

CERN

openlab

" Forward-scaling for future architecture
" Many cores

" Wider vector registers
* e.g. AVX: 256 bits, new instructions

" Forward-portable code
Ct)

C++ classes ;)

Intrinsics :|
ASM :(

..\ .'-

.'

CERN

openlab

Ct

Not an extension to C++
Platform independent

Ct specific containers, similar to valarray, with
arbitrary vector lengths
" e.g. TVEC2D

Exploits both SIMD and hardware thread
parallelism

\»
W Ct GOL example

'Y
CERN

openlab

TVEC2D<US8> current(grid, x_size, y_size);

TVEC2D<U8> neighbors=leftShiftPermute(current, 1) +
rightShiftPermute(current, 1) ...

current=TVEC2D<U8>(neighbors==3||(neighbors==2 &&
current==1));

\ » _
Yt Forward-scaling

.'

CERN

openlab

" Many-core

" Hardware concurrency in instruction streams is
Increasing faster than other concurrency

" We need to think n-way parallelism
* Not 2, 8 or 32

" We may need to search for the lowest level of
parallelism in our algorithms

« For SIMD, data parallelism is often necessary

— Hard synchronization

\»
a7 Mapping parallel data
GERN

Mapping to parallel hardware

large vector, data parallel operation

If vector is large enough, use multiple cores

- =

Use SSE

64

\ » _
Yo Conclusion (1)

.'

CERN

openlab

" Explicit vectorisation is sometimes necessary

" Can't always trust the compiler to vectorise for you
" Memory organization needs attention
" Control flow needs attention

" Custom vector types (classes) with operator
overloading is an efficient and portable
method

65

\ » _
Yo Conclusion (2)

.'

CE RN
openlab

" A lot of time (= money) can be saved by properly
optimizing parallel code

" Track fitter example

" Example vectorization speedup from scalar
double to packed single: 3.7

" Example multithreading speedup on 8 cores: 7.2
" Total w/ both optimizations: 3.7 /0.12 = 30

* Proportional speedup increase can be expected
with future architectures

66

\ » _
s by Conclusion (3)

CERN

openlab

" A proactive approach to SIMD
" Proactive algorithm design
" Future-scalabllity

" Future-portability

67

a7 Further reading
CERN

" Intel IA-32 software developer's manual
" Google “AVX”
" Google “LRB”

68

\»

s by Competition
S'Em! " Rules
" Create the fastest
GOL " Has to be correct

" Use any trick in the book
« SIMD, prefetch, etc.
* Multi-threading

Implementation

" Prize:

« Skipping cells
 Performance is measured
on a neutral machine

7 Tntel .
Threading " Must handle arbitrary

Building Bloc ks

#iterations and x and y
sizes

OYREILLY™

69

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

